Contact mechanics for randomly rough surfaces
نویسنده
چکیده
When two solids are squeezed together they will in general not make atomic contact everywhere within the nominal (or apparent) contact area. This fact has huge practical implications and must be considered in many technological applications. In this paper I briefly review the basic theories of contact mechanics. I consider in detail a recently developed contact mechanics theory. I derive boundary conditions for the stress probability distribution function for elastic, elastoplastic and adhesive contact between solids and present numerical results illustrating some aspects of the theory. I analyze contact problems for very smooth polymer (PMMA) and Pyrex glass surfaces prepared by cooling liquids of glassy materials from above the glass transition temperature. I show that the surface roughness which results from the frozen capillary waves can have a large influence on the contact between the solids. The analysis suggests a new explanation for puzzling experimental results [L. Bureau, T. Baumberger, C. Caroli, arXiv:cond-mat/0510232 v1] about the dependence of the frictional shear stress on the load for contact between a glassy polymer lens and flat substrates. I discuss the possibility of testing the theory using numerical methods, e.g., finite element calculations. c © 2006 Elsevier B.V. All rights reserved.
منابع مشابه
Elastoplastic contact between randomly rough surfaces.
I have developed a theory of contact mechanics between randomly rough surfaces. The solids are assumed to deform elastically when the stress sigma is below the yield stress sigma(Y), and plastically when sigma reaches sigma(Y). I study the dependence of the (apparent) area of contact on the magnification. I show that in most cases the area of real contact A is proportional to the load. If the r...
متن کاملA multiscale molecular dynamics approach to contact mechanics.
The friction and adhesion between elastic bodies are strongly influenced by the roughness of the surfaces in contact. Here we develop a multiscale molecular dynamics approach to contact mechanics, which can be used also when the surfaces have roughness on many different length-scales, e.g., for self affine fractal surfaces. As an illustration we consider the contact between randomly rough surfa...
متن کاملAdhesive contact of rough surfaces: comparison between numerical calculations and analytical theories.
The authors have employed a numerical procedure to analyse the adhesive contact between a soft elastic layer and a rough rigid substrate. The solution to the problem, which belongs to the class of the free boundary problems, is obtained by calculating Green's function which links the pressure distribution to the normal displacements at the interface. The problem is then formulated in the form o...
متن کاملOn the role of scales in contact mechanics and friction between elastomers and randomly rough self-affine surfaces
The paper is devoted to a qualitative analysis of friction of elastomers from the point of view of scales contributing to the force of friction. We argue that--contrary to widespread opinion--friction between a randomly rough self-affine fractal surface and an elastomer is not a multiscale phenomenon, but is governed mostly by the interplay of only two scales--as a rule the largest and the smal...
متن کاملPartial-slip frictional response of rough surfaces
If two elastic bodies with rough surfaces are first pressed against each other and then loaded tangentially, sliding will occur at the boundary of the contact area while the inner parts may still stick. With increasing tangential force, the sliding parts will expand while the sticking parts shrink and finally vanish. In this paper, we study the fractions of the contact area, tangential force an...
متن کامل